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Binary Random Sequences
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While DSSS chip sequences must be generated 
deterministically, properties of binary random sequences are 
useful to gain insight into deterministic sequence design. 

A random binary chip sequences consists of i.i.d. bit values 
with probability one half for a one or a zero. 

Also known as Bernoulli sequences/trials, “coin-flipping” 
sequences

A random sequence of length N can be generated, for 
example, by flipping a fair coin N times and then setting the 
bit to a one for heads and a zero for tails. 

Binary Random Sequence
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X-4 X-3 X-2 X-1 X-0 X1 X2 X3 X4

Coin-flipping sequence H H T H H T H T T

Bernoulli trials/sequence 1 1 0 1 1 0 1 0 0

Binary (indp.) random sequence -1 -1 1 -1 -1 1 -1 1 1

Waveform

These names are simply many versions of the same 
sequence/process.
You should be able to convert one version to others 
easily.
Some properties are conveniently explained when the 
sequence is expressed in a particular version.

Properties of Binary Random 
Sequences: 
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Consider the sequence X1, X2, X3, …, Xn,…

Disadvantages
Can not further “compress” the sequence
Difficult to convey the sequence from the Tx to Rx
Require large storage at both Tx and Rx

Advantages
Random = unpredictable

1. Balanced property
2. Run length property
3. Shift property



Properties of Binary Random 
Sequences: Balanced Property
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{0,1} version

{ 1} version
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Runs: An Example
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A run is a subsequence of consecutive identical symbols 
within the sequence.
The following sequence contains 16 runs

Rel. Freq of Run Lengths

0001111100110100100001010111011

11111 1/16
0000 1/16
111 1/16
000 1/16
11 2/16
00 2/16
1 4/16
0 4/16

A run of 0s (length = 3)

A run of 1s (length = 5)

Rel. Freq of Runs

Run Length Rel. Freq.
5 1/16
4 1/16
3 2/16
2 4/16
1 8/16

Properties of Binary Random 
Sequences: Run Length Property
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011001111100001

Start of a 
run of 1s

P As increases, P is reduced.

Small probability of having log runs.

FYI: Run-Length Encoding (RLE)

32

A very simple form of lossless data compression in which runs of data 
(that is, sequences in which the same data value occurs in many 
consecutive data elements) are stored as a single data value and count, 
rather than as the original run. 
Most useful on data that contains many such runs.
Example: Consider a screen containing plain black text on a solid white 
background. 
A line, with B representing a black pixel and W representing white, 
might read as follows:  

WWWWWWWWWWWWBWWWWWWWWWWWWBBBWWWWWWWWWWWWWWWWWWWWWWWWBWWWWWWWWWWWWWW

With a RLE data compression algorithm applied to the above line, it can be 
rendered as follows:
12W1B12W3B24W1B14W 



Properties of Binary Random 
Sequences: Shift Property
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N

N

X X X X X

X X X X X

Original sequence:

Shifted sequence:
(amount of shift (delay) = 2)

When the shifted amount = 0, 
the two sequences are exactly the same.
When the shifted amount = s, 
we want to compare and .

What proportion are the same?
What proportion are different?

Recall that the numbers in the sequence are 
independent results (from several Bernoulli 
trials)

Proba
bility

0 0 ¼

0 1 ¼

1 0 ¼

1 1 ¼

Properties of Binary Random 
Sequences: Shift Property
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{0,1} version: The comparison is done via the  XOR 
operation

iff they are the same
iff they are different

{ 1} version: The comparison is done via the multiplication 
operation

iff they are the same
iff they are different

Key randomness properties
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[Golomb, 1967][Viterbi, 1995, p. 12] Binary random sequences with 
length N asymptotically large have a number of the properties 
desired in spreading codes 

Balanced property: Equal number of ones and zeros. 
Should have no DC component to avoid a spectral spike at DC or 
biasing the noise in despreading

Run length property: The run length is generally short. 
half of all runs are of length 1 
a fraction 1/2n of all runs are of length n
Long runs reduce the BW spreading and its advantages

Shift property: If they are shifted by any nonzero number of 
elements, the resulting sequence will have half its elements the 
same as in the original sequence, and half its elements different 
from the original sequence. 

(Geometric)

[Goldsmith,2005, p. 387 & Viterbi, p. 12]

Pseudorandom Sequence
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A deterministic sequence that has the balanced, run length, 
and shift properties as it grows asymptotically large is referred 
to as a pseudorandom sequence (noiselike or 
pseudonoise (PN) signal).
Ideally, one would prefer a random binary sequence as the 
spreading sequence.
However, practical synchronization requirements in the 
receiver force one to use periodic Pseudorandom binary 
sequences.
m-sequences
Gold codes
Kasami sequences

Quaternary sequences 
Walsh functions



m-Sequences
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Maximal-length sequences

A type of cyclic code
Generated and characterized by a generator polynomial
Properties can be derived using algebraic coding theory

Simple to generate with linear feedback shift-register
(LFSR) circuits

Automated

Approximate a random binary sequence.

Disadvantage: Relatively easy to intercept and regenerate by 
an unintended receiver [Ziemer, 2007, p 11]

[Goldsmith, 2005, p 387]

Longer name: Maximal length 
linear shift register sequence.

Linear Feedback Shift-Register (LFSR)
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s1 s2 s3

g1 g2 g3

CLK

Shift-register

Feedback Linear (combination)

Binary sequences drawn from the alphabet {0,1} are shifted through the 
shift register in response to clock pulses. 

Each clock time, the register shifts all its contents to the right.
The particular 1s and 0s occupying the shift register stages after a clock 
pulse are called states.

Suppose there are r
FFs. Then a state of 
the SR can be 
represented by r bits.

There are possible 
states.
There are 
non-zero states.

GF(2)
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Galois field (finite field) of two elements 

Consist of 
the symbols 0 and 1 and 
the (binary) operations of 

modulo-2 addition (XOR) and 

modulo-2 multiplication. 

The operations are defined by

Linear Feedback Shift-Register (LFSR)
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All the values are in GF(2) which means they can only be 0 or 1.
The value of gi determines whether the output of the kth FF will be in the sum 
that produce the feedback bit.

1 signifies closed or a connection and 
0 signifies open or no connection.

Ex. Suppose in our LFSR.

s1

0

s2 s3

1 1

s1 s2 s3



m-sequence generator (1)
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Start with a “primitive polynomial”

r = degree of the polynomial

Use r flip-flops.

The feedback taps in the feedback shift register are selected 
to correspond to the coefficients of the primitive polynomial.

Ex. is a primitive polynomial.

(Degree: r = 3 use 3 flip-flops)

(See Section 13.4.1 in [Lathi, 1998])

s1 s2 s3

m-sequence generator (2)
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s1 s2 s3
output

We start with state 100. 
You may choose different non-zero state.
Note that if we start with 000, we won’t go anywhere.

Any polynomial generates 
periodic sequence.

The maximum period is .

In this example, the state cycles 
through all non-zero 
states.

output

State Diagram
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s1 s2 s3
output

100

101

010

110
111

011

001

000

output

Primitive Polynomial
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Definition: A LFSR generates an m-sequence if and only 
if (starting with any nonzero state,) it visits all possible 
nonzero states (in one cycle).

Technically, one can define primitive polynomial using 
concepts from finite field theory.

Fact: A polynomial generates m-sequence if and only if it is a 
primitive polynomial.

Therefore, we use this fact to define primitive polynomial.

For us, a polynomial is primitive if the corresponding 
LFSR circuit generates m-sequence.



Sample Exam Question
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Draw the complete state diagrams for linear feedback shift 
registers (LFSRs) using the following polynomials. 
Does either LFSR generate an m-sequence?

1.

2.

Solution (1)
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Draw the complete state diagrams for linear feedback shift 
registers (LFSRs) using the following polynomials. 
Does either LFSR generate an m-sequence?

1.

100

101

010

110
111

011

001

000

The corresponding LFSR 
generates an m-
sequence because the 
state diagram contains a 
cycle that visits all possible 
nonzero states.
We can also conclude that 

is a 
primitive polynomial.

s1 s2 s3 output

Solution (2)
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m-Sequences: More properties
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1. The contents of the shift register will cycle over all possible 2r-1 nonzero states 
before repeating.

2. Contain one more 1 than 0 (Slightly unbalanced)
3. Shift-and-add property: Sum of two (cyclic-)shifted m-sequences is 

another (cyclic-)shift of the same m-sequence
4. If a window of width r is slid along an m-sequence for N = 2r-1 shifts, each r-

tuple except the all-zeros r-tuple will appear exactly once
5. For any m-sequence, there are

One run of ones of length r
One run of zeros of length r-1
One run of ones and one run of zeroes of length r-2
Two runs of ones and two runs of zeros of length r-3
Four runs of ones and four runs of zeros of length r-4
…
2r-3 runs of ones and 2r-3 runs of zeros of length 1



m-Sequences: More Properties
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1. The contents of the shift register will cycle over all possible 
2r-1 nonzero states before repeating.

2. Each cycle contains exactly one more 1s than 0s 
(Slightly unbalanced)

0

1

0

0
1

1

1

00101110010111001011100101110010111001011100101110010111

[S.W. Golomb, Shift Register Sequences, Holden-Day, San Francisco, 1967.]

m-Sequences: More Properties
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3. Shift-and-add property: Sum of two (cyclic-)shifted m-
sequences is another (cyclic-)shift of the same m-sequence

4. If a window of width r is slid along an m-sequence for N = 2r-1 shifts, 
each r-tuple except the all-zeros r-tuple will appear exactly once

00101110010111001011100101110010111001011100101110010111

0 phase shift: 0010111
1 phase shift: 0101110
2 phase shift: 1011100
3 phase shift: 0111001
4 phase shift: 1110010
5 phase shift: 1100101
6 phase shift: 1001011

= 1100101 

00101110010111001011100101110010111001011100101110010111
[S.W. Golomb, Shift Register Sequences, Holden-Day, San Francisco, 1967.]

m-Sequences: More Properties
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5. For any m-sequence, there are 2r-1 runs.
One run of ones of length r
One run of zeros of length r-1
One run of ones and one run of zeroes of length r-2
Two runs of ones and two runs of zeros of length r-3
Four runs of ones and four runs of zeros of length r-4
…
2r-3 runs of ones and 2r-3 runs of zeros of length 1

In other words, relative frequency for runs of length is 

Runs:
111
00
1,0

0

1

0

0
1

1

1
001011100101110010111001011100101110010111

[S.W. Golomb, Shift Register Sequences, Holden-Day, San Francisco, 1967.]

m-Sequences: Another Example
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25-1 = 31-chip m-sequence

The following sequence contains 16 runs

Rel. Freq of Run Lengths

0001111100110100100001010111011

11111 1/16
0000 1/16
111 1/16
000 1/16
11 2/16
00 2/16
1 4/16
0 4/16

Rel. Freq of Runs

Run Length Rel. Freq.
5 1/16
4 1/16
3 2/16
2 4/16
1 8/16

[S.W. Golomb, Shift Register Sequences, Holden-Day, San Francisco, 1967.]



(Time) Autocorrelation Function for 
Energy Sequence
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34

(Time) Autocorrelation Function for 
Energy Sequence
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x
34

28
28

(Time) Autocorrelation Function for 
Energy Sequence
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34

28
28

MATLAB: xcorr
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r = xcorr(x,y)
Return the cross-correlation of two discrete-time sequences, x
and y. 
If x and y have different lengths, the function appends zeros at 
the end of the shorter vector so it has the same length as the 
other. 

The lag ( ) is varied from to where is the 
longer length of the two sequences.

[r,lags] = xcorr(___)
Also returns vector with the lags ( ) at which the correlations 
are computed.



(Time) Autocorrelation Function for 
Energy Sequence 
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close all
x = [0 2 4 3 2 1 0];

% plot the signal
plot(x,'--','LineWidth',1.5)
hold on
plot(x,'o','LineWidth',1.5)
ylabel('x[n]')
xlabel('n')

% plot auto-correlation function
figure
[R lag] = xcorr(x,x);
plot(R,'--','LineWidth',1.5)
hold on
plot(R,'o','LineWidth',1.5)
ylabel('R_x[\tau]')
xlabel('\tau')

(Time) Autocorrelation Function for 
Power and Periodic Sequence
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Time average Autocorrelation 

Power Sequence

Periodic Sequence
with period T0

Example: (Time) Autocorrelation 
Function for Periodic Sequence
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Example: (Time) Autocorrelation 
Function for Periodic Sequence

61

5.67

4.67



Back to m-Sequences
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00101110010111001011100101110010111001011100101110010111
0010111

1001011
In actual transmission, we will map “0 and 1” to “+1 and -1”, respectively.

:

Back to m-Sequences
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00101110010111001011100101110010111001011100101110010111
0010111

1001011

-1  1 -1 -1 -1  1  1
1  1 -1  1 -1 -1 -1
-1  1  1 -1  1 -1 -1 = -1

Autocorrelation when not aligned:

:

In actual transmission, we will map “0 and 1” to “+1 and -1”, respectively.

m-Sequences: Autocorrelation function
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0010111

m-Sequences: Autocorrelation function
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1010111011000111110011010010000



Autocorrelation Function for Periodic 
Binary Random Sequence
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Consider a periodic sequence whose one period is given by  

[-1     1    -1    -1     1    -1     1     1    -1    -1]

The shift property of binary 
random sequence implies 
that

x

n

R x n x n

x n x n

Autocorrelation Function for Periodic 
Binary Random Sequence
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Consider a periodic sequence whose one period is given by  

1-2*randi([0 1],1,100000)

The shift property of binary 
random sequence implies 
that

x

n

R x n x n

x n x n

Autocorrelation and PSD
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(Normalized) autocorrelations of maximal sequence and 
random binary sequence.

Power spectral density of maximal sequence.
[Torrieri , 2005, Fig 2.9]

[Torrieri , 2005, Fig 2.10]

References: m-sequences
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Karim and Sarraf, W-CDMA and 
cdma2000 for 3G Mobile Networks, 
2002.

Page 84-90
Viterbi, CDMA: Principles of Spread 
Spectrum Communication,  1995

Chapter 1 and 2
Goldsmith, Wireless Communications, 
2005

Chapter 13
Tse and Viswanath, Fundamentals of 
Wireless Communication, 2005

Section 3.4.3

[TK5103.452 K37 2002]

[TK5103.45 V57 1995]



Review: m-sequence
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DSSS: m t c t

0  0  1  0  1  1  1  0  0  1  0  1
1  1 -1  1 -1 -1 -1  1  1 -1  1 -1

Spectral spreading waveform

Spreading code/sequence

c[n]

Imitate properties 
of Bernoulli trials

Pseudo-random

One important collection of these is the collection of m-sequences.

Generated with LFSR whose connections corresponds to coefficients 
of primitive polynomials. The resulting sequence achieves the 
maximum period (length) of where r is the degree of 
primitive polynomial.
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5.67

4.67

Example: (Time) Autocorrelation 
Function for Periodic Sequence
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5.67

4.67

Example: (Time) Autocorrelation 
Function for Periodic Sequence
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5.67

4.67

Let’s call this the “sumproduct” 
operation. (This exact name is 
used in Excel for this kind of 
operation.) Mathematically, this 
is simply the dot product 
between two real-valued vectors.

Let’s call this scaling the 
“normalization” operation. 

So, the combined computation can be called 
“normalized sumproduct” operation. We may also refer 
to this as the (sliding computation of) “autocorrelation” 
operation as well.



Sliding computation of autocorrelation
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m-sequence (repeated 5 times)

m-sequence 
(1 period)

autocorrelation

c[n]

Wireless Comm. and Multipath Fading

15

v

i i
i

y t x t h t n t x t n t

v

i i
i

h t t

s s sh t t t T t T t T

s s sh t t t T t T t T

The signal received consists of a number of reflected rays, 
each characterized by a different amount of attenuation and 
delay.

ISI
(Intersymbol Interference)

TS

Wireless Comm. and Multipath Fading
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v

i i
i

y n c n

The signal received consists of a number of reflected rays, 
each characterized by a different amount of attenuation and 
delay.

y n c n c n c n

Here, let’s consider the discrete-time version 
of fading:

In particular, let’s try

Identifying Parameters of Multipath 
Fading via Autocorrelation
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